Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 412, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575808

RESUMO

The CLIP1-LTK fusion was recently discovered as a novel oncogenic driver in non-small cell lung cancer (NSCLC). Lorlatinib, a third-generation ALK inhibitor, exhibited a dramatic clinical response in a NSCLC patient harboring CLIP1-LTK fusion. However, it is expected that acquired resistance will inevitably develop, particularly by LTK mutations, as observed in NSCLC induced by oncogenic tyrosine kinases treated with corresponding tyrosine kinase inhibitors (TKIs). In this study, we evaluate eight LTK mutations corresponding to ALK mutations that lead to on-target resistance to lorlatinib. All LTK mutations show resistance to lorlatinib with the L650F mutation being the highest. In vitro and in vivo analyses demonstrate that gilteritinib can overcome the L650F-mediated resistance to lorlatinib. In silico analysis suggests that introduction of the L650F mutation may attenuate lorlatinib-LTK binding. Our study provides preclinical evaluations of potential on-target resistance mutations to lorlatinib, and a novel strategy to overcome the resistance.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Pirazóis , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Mutação , Proteínas do Citoesqueleto/genética , Receptores Proteína Tirosina Quinases/genética
2.
NPJ Precis Oncol ; 8(1): 46, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396251

RESUMO

Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.

3.
Cancer Res ; 82(20): 3751-3762, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36166639

RESUMO

Distinguishing oncogenic mutations from variants of unknown significance (VUS) is critical for precision cancer medicine. Here, computational modeling of 71,756 RET variants for positive selection together with functional assays of 110 representative variants identified a three-dimensional cluster of VUSs carried by multiple human cancers that cause amino acid substitutions in the calmodulin-like motif (CaLM) of RET. Molecular dynamics simulations indicated that CaLM mutations decrease interactions between Ca2+ and its surrounding residues and induce conformational distortion of the RET cysteine-rich domain containing the CaLM. RET-CaLM mutations caused ligand-independent constitutive activation of RET kinase by homodimerization mediated by illegitimate disulfide bond formation. RET-CaLM mutants possessed oncogenic and tumorigenic activities that could be suppressed by tyrosine kinase inhibitors targeting RET. This study identifies calcium-binding ablating mutations as a novel type of oncogenic mutation of RET and indicates that in silico-driven annotation of VUSs of druggable oncogenes is a promising strategy to identify targetable driver mutations. SIGNIFICANCE: Comprehensive proteogenomic and in silico analyses of a vast number of VUSs identify a novel set of oncogenic and druggable mutations in the well-characterized RET oncogene.


Assuntos
Proteínas de Drosophila , Neoplasia Endócrina Múltipla Tipo 2a , Neoplasias , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Carcinogênese/genética , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Proteínas de Drosophila/genética , Humanos , Ligantes , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret/genética
4.
Cancer Genet ; 266-267: 1-6, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598548

RESUMO

PURPOSE: The present study clarified the sensitivity of the BRAF tyrosine kinase inhibitor mechanism in patients with BRAF compound mutation and predicted the sensitivity using molecular dynamics simulation. METHODS: We examined 16 BRAF tumors with p.V600E-positive non-small-cell lung cancer. RESULTS: One patient (6.2%) had a BRAF p.V600E and p.K601_W604 compound mutation with a good clinical response to dabrafenib and trametinib. Molecular dynamics simulation also complemented the effect. CONCLUSIONS: The combination of a genetic analysis and computational simulation model may help predict the sensitivity for dabrafenib in cases with a rare BRAF compound mutation. The construction of a genomic and simulation fused database is important for the development of personalized medicine in this field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Imidazóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Oximas , Proteínas Proto-Oncogênicas B-raf/genética , Piridonas , Pirimidinonas
5.
Cell Oncol (Dordr) ; 45(1): 121-134, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997908

RESUMO

PURPOSE: Dealing with variants of unknown significance (VUS) is an important issue in the clinical application of NGS-based cancer gene panel tests. We detected a novel ERBB2 extracellular domain VUS, c.1157A > G p.(E401G), in a cancer gene panel test. Since the mechanisms of activation by ERBB2 extracellular domain (ECD) variants are not fully understood, we aimed to clarify those mechanisms and the biological functions of ERBB2 E401G. METHODS: ERBB2 E401G was selected as VUS for analysis because multiple software tools predicted its pathogenicity. We prepared ERBB2 expression vectors with the E401G variant as well as vectors with S310F and E321G, which are known to be activating mutations. On the basis of wild-type ERBB2 or mutant ERBB2 expression in cell lines without ERBB2 amplification or variants, we evaluated the phosphorylation of human epidermal growth factor receptor 2 and related proteins, and investigated with molecular dynamics (MD) simulation the mechanisms conferred by the variants. The biological effects of ERBB2 E401G were also investigated, both in vitro and in vivo. RESULTS: We found that ERBB2 E401G enhances C-terminal phosphorylation in a way similar to S310F. MD simulation analysis revealed that these variants maintain the stability of the EGFR-HER2 heterodimer in a ligand-independent manner. Moreover, ERBB2 E401G-transduced cells showed an increased invasive capacity in vitro and an increased tumor growth capacity in vivo. CONCLUSION: Our results provide important information on the activating mechanisms of ERBB2 extracellular domain (ECD) variants and illustrate a model workflow integrating wet and dry bench processes for the analysis of VUS detected with cancer gene panel tests.


Assuntos
Neoplasias , Receptor ErbB-2 , Humanos , Mutação/genética , Neoplasias/genética , Oncogenes , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
6.
Nat Commun ; 12(1): 2793, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990583

RESUMO

Capturing the dynamic processes of biomolecular systems in atomistic detail remains difficult despite recent experimental advances. Although molecular dynamics (MD) techniques enable atomic-level observations, simulations of "slow" biomolecular processes (with timescales longer than submilliseconds) are challenging because of current computer speed limitations. Therefore, we developed a method to accelerate MD simulations by high-frequency ultrasound perturbation. The binding events between the protein CDK2 and its small-molecule inhibitors were nearly undetectable in 100-ns conventional MD, but the method successfully accelerated their slow binding rates by up to 10-20 times. Hypersound-accelerated MD simulations revealed a variety of microscopic kinetic features of the inhibitors on the protein surface, such as the existence of different binding pathways to the active site. Moreover, the simulations allowed the estimation of the corresponding kinetic parameters and exploring other druggable pockets. This method can thus provide deeper insight into the microscopic interactions controlling biomolecular processes.


Assuntos
Ondas de Choque de Alta Energia , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular/estatística & dados numéricos , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
Nat Commun ; 12(1): 1261, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627640

RESUMO

ALK gene rearrangement was observed in 3%-5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI-resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


Assuntos
Compostos de Anilina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Lactamas Macrocíclicas/uso terapêutico , Pirazinas/uso terapêutico , Aminopiridinas , Animais , Apoptose/fisiologia , Benzamidas/uso terapêutico , Carbazóis/uso terapêutico , Linhagem Celular , Sobrevivência Celular/fisiologia , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Immunoblotting , Indazóis/uso terapêutico , Lactamas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Recidiva Local de Neoplasia , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
8.
J Thorac Oncol ; 16(3): 477-482, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166721

RESUMO

OBJECTIVES: The purposes of this study are to clarify the details of the ALK tyrosine kinase inhibitor (TKI) resistance mechanism in rebiopsy cases and to predict novel resistance gene alterations using molecular dynamics simulation. METHODS: A total of 21 patients with ALK-positive NSCLC who underwent a rebiopsy after ALK TKI failure were included in this analysis. ALK fluorescence in situ hybridization and reverse transcription polymerase chain reaction were performed with paired initial and rebiopsy tumor specimens. RESULTS: Nine patients had no known ALK resistance mechanisms. Four had ALK amplification. L1196M, I1171N, and G1269A, mutations that are known to indicate resistance to ALK TKIs, were detected in one patient each. Small cell carcinoma and sarcomatoid transition were found in one case each. L1196Q, P1094H, and exon 24 76-base pair insertion were detected after the second-generation ALK TKIs. CONCLUSIONS: The combination of a genetic analysis and a computational simulation model may make a prediction of resistance mechanisms for overcoming ALK TKI resistance, and the construction of a genomic and simulation fused database is important for the development of personalized medicine in this field.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Crizotinibe , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
9.
Bioorg Med Chem Lett ; 31: 127639, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129991

RESUMO

Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the transient receptor potential family, detects a wide range of environmental stimuli, such as low temperature, abnormal pH, and reactive irritants. TRPA1 is of great interest as a target protein in fields related to pharmaceuticals and foods. In this study, a library of natural products was explored to identify TRPA1 activators by pharmacophore screening of known TRPA1 agonists and biological assays for agonist activity. The study identified six natural compounds as novel TRPA1 agonists. The discovery of these compounds may prove useful in elucidating the TRPA1 activation mechanism.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas , Canal de Cátion TRPA1/agonistas , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
10.
Heliyon ; 6(6): e04227, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613113

RESUMO

Functional inhibitory peptides of human dipeptidyl peptidase 4 (hDPP4) have been highly anticipated as the active ingredient of functional food for type II diabetes; however, the molecular mechanism of hDPP4 inhibition remains unclear. In this study, we focused on dipeptides and tripeptides, which display structure-function correlations that are relatively easy to analyze, and examined their interactions with hDPP4 on an atomic level using a combination of docking studies and an hDPP4 inhibition assay. First, we performed comprehensive binding mode analysis of the dipeptide library and demonstrated that the formation of a tight interaction with the S1 subsite composing part of the substrate pocket is essential for dipeptides to compete with the substrate and strongly inhibit hDPP4. Next, we synthesized tripeptides by adding various amino acids to the C-terminus of Ile-Pro and Val-Pro, which have especially high inhibitory activity among compounds in the dipeptide library, and measured the hDPP4 inhibitory activity of the tripeptides. When hydrophobic amino acids (Ile, Met, Val, Trp) were added, the inhibitory activity increased several-fold. This phenomenon could be explained as follows: the C-terminal amino acid of the tripeptide formed hydrophobic interactions with Tyr547 and Trp629, which compose the S1' subsite located relatively outside the substrate pocket, thereby stabilizing the hDPP4-peptide binding. The structural information on the interaction between hDPP4 and peptide inhibitors attained in this study is anticipated to be useful in the development of a more potent hDPP4 competitive inhibitor.

11.
Bioorg Med Chem Lett ; 30(11): 127142, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249116

RESUMO

Recent work has gradually been clarifying the binding site of non-electrophilic agonists on the transient receptor potential A1 (TRPA1). This study searched for non-electrophilic TRPA1 agonists by means of in silico drug discovery techniques based on three-dimensional (3-D) protein structure. First, agonist-bound pocket structures were explored using an advanced molecular dynamics simulation starting from the cryo-electron microscopic structure of TRPA1, and several pocket structures suitable for virtual screening were extracted by structure evaluation using known non-electrophilic TRPA1 agonists. Next, 49 compounds were selected as new non-electrophilic agonist candidates from a library of natural products comprising 10,555 compounds by molecular docking toward these pocket structures. Measurement of the TRPA1 agonist activity of these compounds showed notable TRPA1 activation with three compounds (decanol, 2-ethyl-1-hexanol, phenethyl butanoate). Decanol and 2-ethyl-1-hexanol, which are categorized as fatty alcohols, in particular have a novel chemical scaffold for TRPA1 activation. The results of this study are expected to be of considerable use in understanding the molecular mechanism of TRPA1 recognition by non-electrophilic agonists.


Assuntos
Produtos Biológicos/química , Canal de Cátion TRPA1/agonistas , Sítios de Ligação , Produtos Biológicos/metabolismo , Hexanóis/química , Hexanóis/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Canal de Cátion TRPA1/metabolismo
12.
J Comput Chem ; 39(32): 2679-2689, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30515903

RESUMO

Protein-drug binding mode prediction from the apo-protein structure is challenging because drug binding often induces significant protein conformational changes. Here, the authors report a computational workflow that incorporates a novel pocket generation method. First, the closed protein pocket is expanded by repeatedly filling virtual atoms during molecular dynamics (MD) simulations. Second, after ligand docking toward the prepared pocket structures, binding mode candidates are ranked by MD/Molecular Mechanics Poisson-Boltzmann Surface Area. The authors validated our workflow using CDK2 kinase, which has an especially-closed ATP-binding pocket in the apo-form, and several inhibitors. The crystallographic pose coincided with the top-ranked docking pose for 59% (34/58) of the compounds and was within the top five-ranked ones for 88% (51/58), while those estimated by a conventional prediction protocol were 9% (5/58) and 50% (29/58), respectively. Our study demonstrates that the prediction accuracy is significantly improved by preceding pocket expansion, leading to generation of conformationally-diverse binding mode candidates. © 2018 Wiley Periodicals, Inc.


Assuntos
Quinase 2 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...